BIO-373 Genetics & Genomics

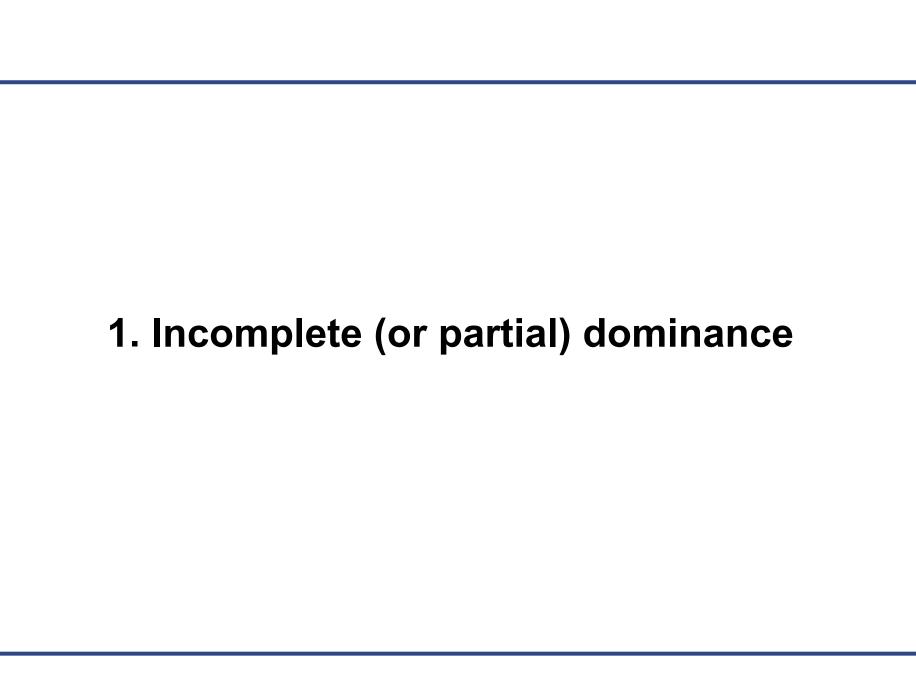
Extension of Mendelian genetics

Jacques Fellay

School of Life Sciences, EPFL Precision medicine unit, CHUV

jacques.fellay@epfl.ch

Why do we need to go beyond Mendelian genetics?

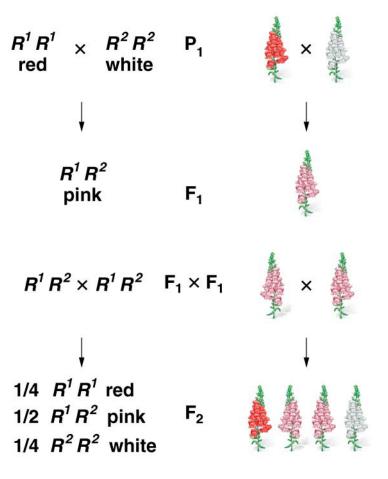

Why do we need to go beyond Mendelian genetics?

Many phenotypes cannot be explained by Mendel's transmission laws

→ Co-dominance, incomplete dominance, epistasis, multiple alleles, lethal alleles, imprinting...

Contents

- 1 Incomplete dominance
- 2 Codominance
- 3 Multiple alleles of a gene
- 4 Lethal alleles and essential genes
- 5 Impact of multiple genes on a phenotype
- 6 Pleiotropy
- 7 Gene x environment interactions


Incomplete (or partial) dominance

- Neither allele is dominant

 intermediate phenotype
- Each genotype has its own phenotype

- Botanical example: snapdragon (belle-de-nuit ou muflier des jardins)
- Cross between red and white flowers
 - F₁ offspring: pink flowers
 - F₂ generation: 1/4 red, 1/2 pink, 1/4 white
 - Phenotypic and genotypic ratios are the same

2. Codominance

Codominance

- No dominance or recessiveness
- No incomplete or blending
- Joint expression of both alleles in a heterozygote
- Possible when 2 alleles have distinct phenotypic expression

Example of codominance in humans

MN Blood Group

- M and N are two distinct forms of a glycoprotein that can be expressed on red blood cells
- Alleles L^M and L^N

Genotype	Phenotype
LM LM	M
LM LN	MN
LN LN	Ν

3. Multiple alleles of a gene

Multiple alleles

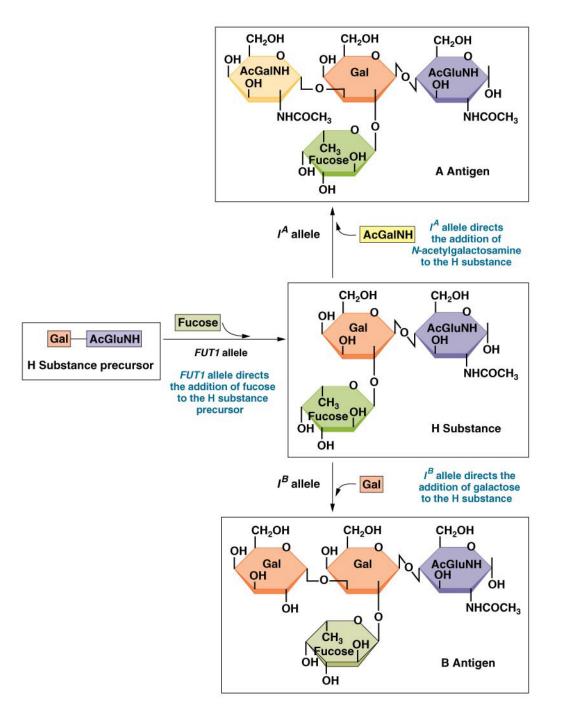
- Mutations can modify a gene in various ways
 3 or more alleles of the same gene might exist
- The resulting mode of inheritance is unique
- This can only be studied in populations and not in single individuals (who always carry two alleles per genetic locus)

ABO blood groups

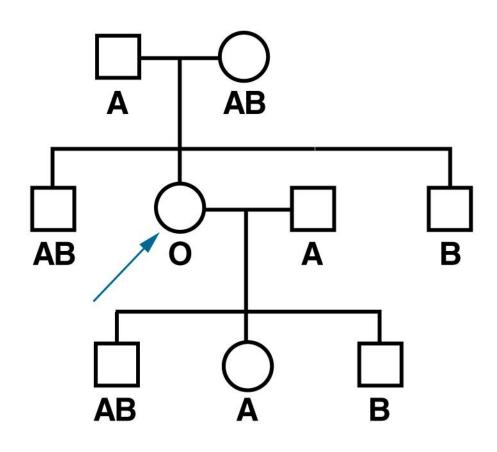
- Three possible alleles of a single gene (I for isoagglutinogen)
 - $-I^{A}$
 - _ **|**B
- I^A and I^B: encode the A and B antigens that are present at the surface of red blood cells
- i: no antigen produced

Genotype	Antigen	Phenotype
$I^A I^A$	Α	Α
I^A i	A	
$I^B I^B$	В	В
I^B i	В∫	
$I^A I^B$	A, B Neither	AB
i i	Neither	O

I^A and I^B are dominant to *i*I^A and I^B are codominant to each other


ABO blood groups

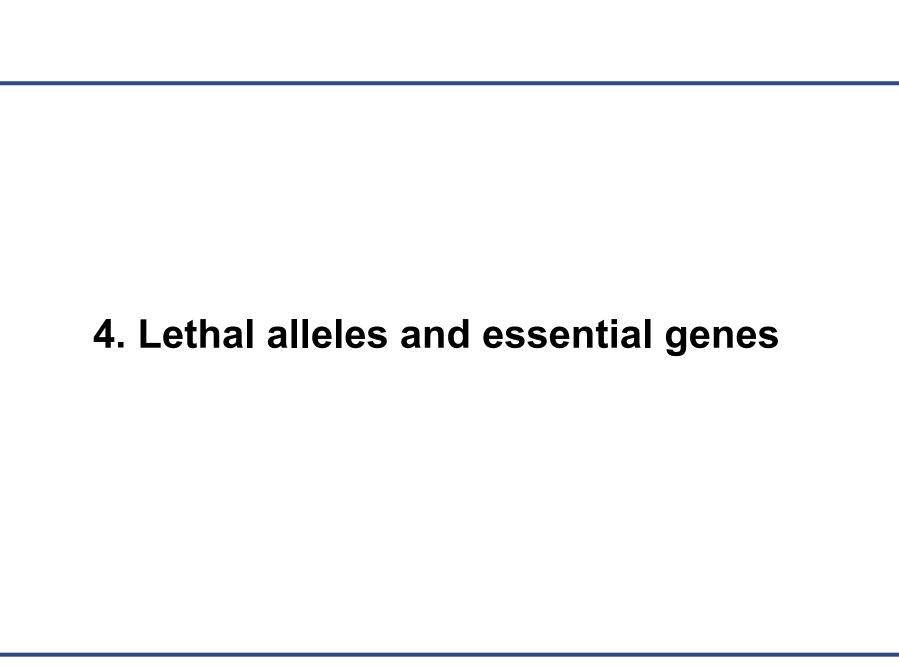
A and B antigens


 Carbohydrate groups (N-Acetylgalactosamine for A antigen or galactose for B antigen) bound to H substance on red blood cells

H substance

- Basic sugar layer at the surface of red blood cells
- O blood types (ii) only have the H substance (O is for "Ohne," auf Deutsch)

A more complex case


Bombay phenotype

- Type O female, yet...
 - one parent has type AB blood and
 - She gave I^B allele to two children

- Female found to be homozygous for a FUT1 (fucosyl transferase) mutation
 - Prevents her from producing H substance
 - No base substrate to make A or B antigens
 - Results functionally in type O

Bombay phenotype

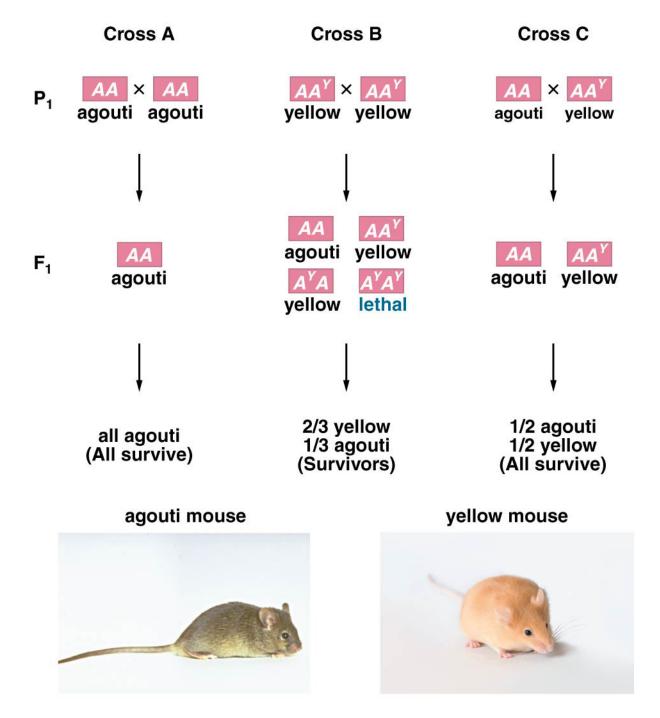
- One gene (FUT1) is masking the phentypic effect of another one (ABO)
- Very rare: 1:10'000 in India, 1:100'000 in Europe
- Individuals with Bombay phenotype can only receive blood transfusion from Bombay donors

Essential genes and lethal alleles

- Absolutely required for survival
- May contain lethal alleles

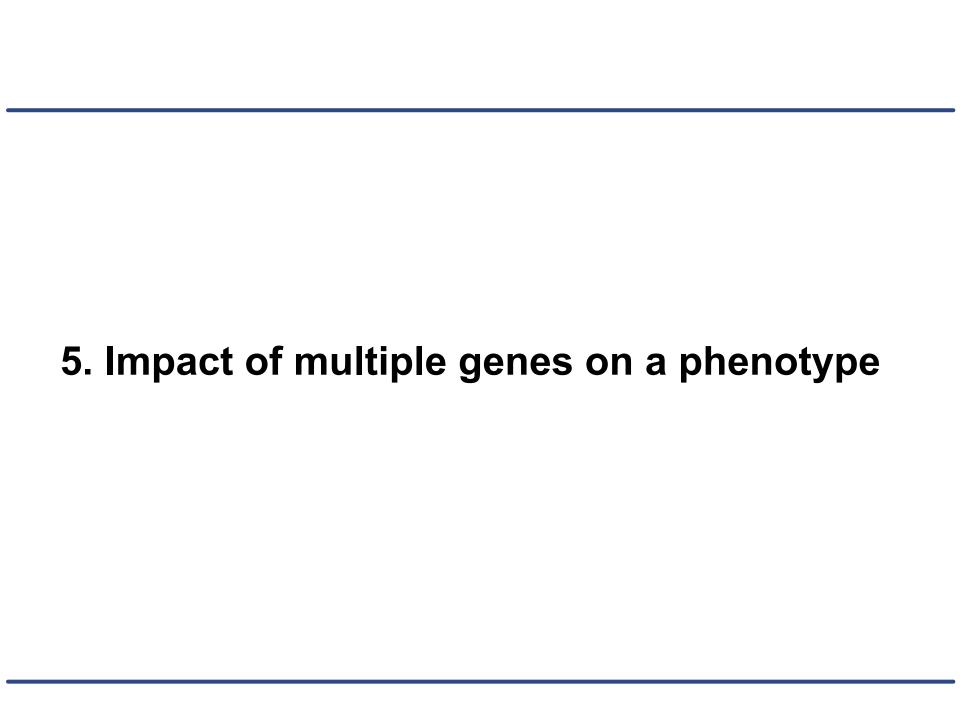
- Dominant lethal allele: the presence of a single copy is incompatible with life
- Recessive lethal allele: tolerated in heterozygous state

Dominant lethal allele in humans

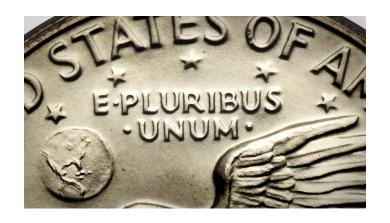

- Huntington disease
 - Characterized by progressive degeneration of nervous system, dementia, and death
 - Due to allele H (abnormal number of CAG trinucleotide repeat in HTT gene)
 - Autosomal dominant = Hh genotype

https://www.youtube.com/watch?v=JL9Y3P870jU

Recessive lethal allele in mice


- Agouti gene, responsible for coat color
 - Agouti allele A
 - Mutant yellow allele A^Y

		Crosses		
(A) agouti	×	agouti	\longrightarrow	all agouti
(B) yellow	×	yellow	\longrightarrow	2/3 yellow: 1/3 agouti
(C) agouti	×	yellow	→	1/2 yellow: 1/2 agouti


Recessive lethal allele in mice

- Mutant allele (A^Y)
 - Behaves dominantly to normal allele to control coat color
 - Behaves as homozygous recessive lethal allele
- Genotype A^Y A^Y does not survive

E pluribus unum ("out of many, one")

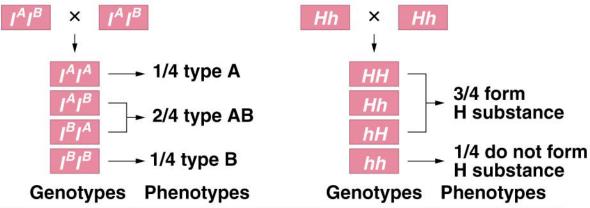
- Most phenotype result from the influence of multiple genes
- Genic interaction: several genes influence a trait; doesn't imply direct interaction
- Epistatic interaction: direct interaction between alleles of different genes

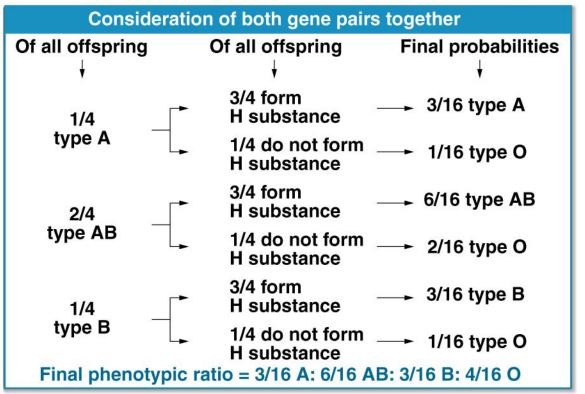
Example of genic interaction

Hereditary deafness

- Many genes are involved in ear formation
- These genes interact to produce a common phenotype
- Many mutations can interrupt development and lead to hereditary deafness

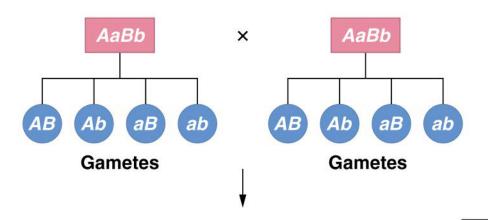
Example of epistasic interaction


Back to Bombay...


- First locus masks expression of second locus
- Homozygous mutation in FUT1 gene masks expression of I^A and I^B alleles
- A and B antigen forms only when individual has at least one wild-type allele

Cross between two individuals heterozygous at the two loci involved in ABO group determination (figure)

$I^A I^B H h \times I^A I^B H h$



Impact of epistasis on phenotypic ratio

- Epistatic interactions modify the phenotypic ratios expected under Mendel's transmission laws.
- Dihybrid cross: 9:3:3:1
- Effect possible on one or more of four phenotypic categories

1/16	AABB	s 	
2/16	AABb		1/16 + 2/16 + 2/16 + 4/16
2/16	AaBB		
4/16	AaBb		
1/16	AAbb	s 	1/16 + 2/16
2/16	Aabb	s <u>-</u>	
1/16	aaBB	-	1/16 + 2/16
2/16	aaBb	(<u>1</u>	
1/16	aabb		1/16

Dihybrid ratio	Modified ratios				
9/16 <i>A-B-</i>	9/16	12/16	9/16	9/16	15/16
3/16 <i>A-bb</i>	3/16	12/10	6/16	13/10	
3/16 <i>aaB</i> –	4/16	3/16	7/16	0/10	
1/16 aabb	4/10	1/16		1/16	1/16

Dominant epistasis

 Dominant allele at one locus masks an allele at second locus

- Summer squash fruit color
 - Determined by 2 loci, A and B
 - Dominant allele A = white fruit
 - Regardless of second loci allele
 - Absence of A allele (aa)
 - Genotypes BB, Bb = yellow fruit
 - Genotype bb = green fruit

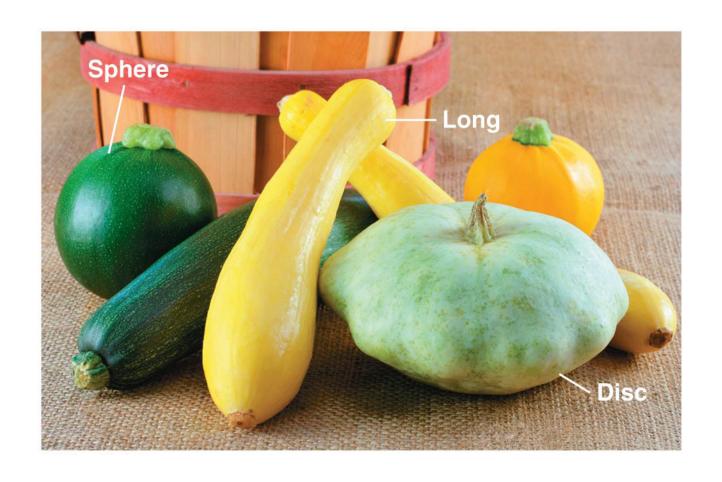
Dominant epistasis

$$F_1$$
: $AaBb \times AaBb$

F ₂ Ratio	Genotype	Phenotype	Final Phenotypic Ratio
9/16	A-B-	white	12/16 white
3/16	A-bb	white	12/16 white
3/16	ааВ-	yellow	3/16 yellow 1/16 green
1/16	aabb	green	1/ 10 green

Recessive epistasis

 Homozygous recessive allele at one locus masks an allele at second locus


- Mouse coat color (again...):
 - A allele (dominant): agouti phenotype
 - B allele: black pigment
 - bb genotype: no black pigment, even if A or a alleles present → mouse is albino
- bb genotype masks the expression of the A allele: recessive epistasis

Recessive epistasis

$$F_1$$
: $AaBb \times AaBb$

F ₂ Ratio	Genotype	Phenotype	Final Phenotypic Ratio
9/16	A-B-	agouti	0/16
3/16	A-bb	albino	9/16 agouti
3/16	ааВ—	black	3/16 black
1/16	aabb	albino	4/16 albino

Epistasis resulting in a novel phenotypes

Epistasis resulting in a novel phenotypes

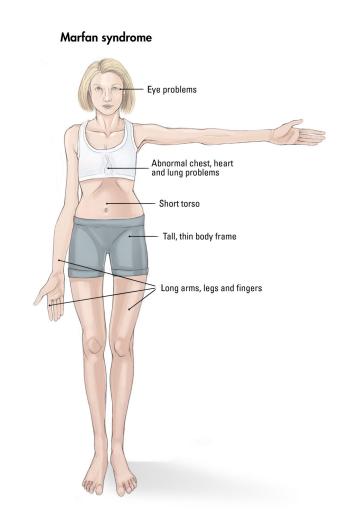
- Shape of summer squash: disc-shaped fruit (AABB) crossed with long fruit (aabb)
- F₁: all disc-shaped fruit
- F₂: includes the two parental phenotypes and a new spherical variants
 - Dominant alleles at 2 loci → disc-shaped
 - Dominant allele at 1 locus → spherical
 - Only recessive alleles → long

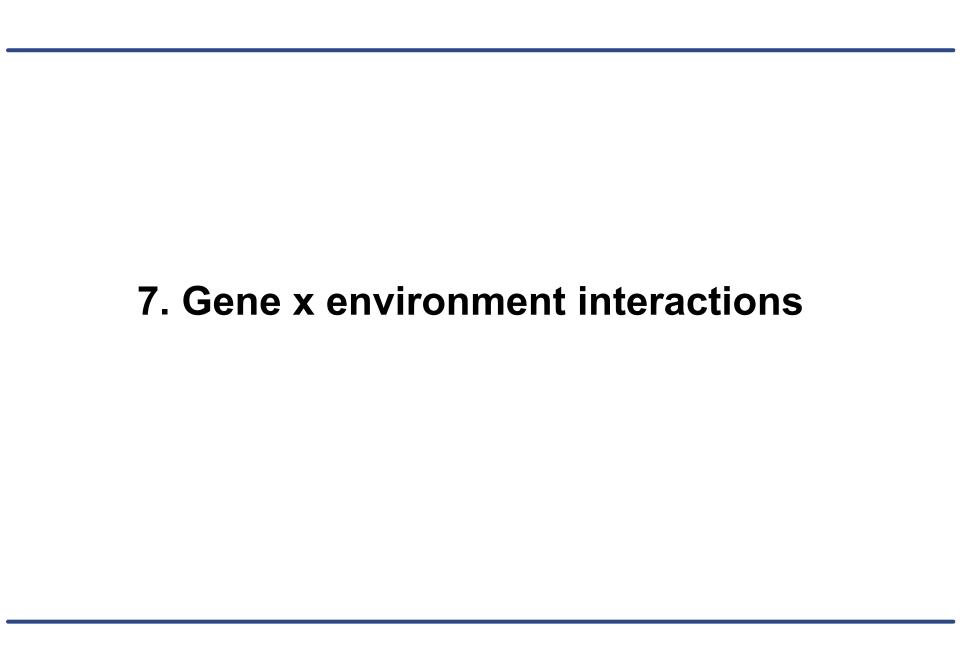
Epistasis resulting in a novel phenotypes

$$F_1$$
: $AaBb \times AaBb$ disc disc

F ₂ Ratio	Genotype	Phenotype	Final Phenotypic Ratio
9/16	A-B-	disc	9/16 disc 6/16 sphere 1/16 long
3/16	A-bb	sphere	
3/16	ааВ–	sphere	
1/16	aabb	long	

6. Pleiotropy


Pleiotropy


- We just saw that several genes can influence a single phenotype
- The opposite situation, where a single gene has multiple phenotypic effects, is called pleiotropy
- Extremely frequent

Example of pleiotropy in humans

Marfan syndrome

- Autosomal dominant allele in fibrillin gene, encoding a protein important for connective tissues
- Multiples phenotypic consequences:
 - Lens dislocation
 - Aortic aneurism
 - Extension of long bones
 - **-** ...

Phenotype = direct expression of genotype?

- A phenotype usually results from multiple influences
 - Core gene
 - Other genotypes (genic and epistatic influences)
 - Environment

Often difficult to disentangle the respective influences of genes and environment ⇔ longstanding debate between "innate" and "acquired"

Penetrance and expressivity

Penetrance

Percentage of expression of the mutant genotype in a population

Expressivity

- Range of expression of mutant phenotype
- Result of genetic background differences and/or environmental effects

Causes of variable expressivity

Temperature effects

- Evening primrose
 - Red flowers at 23°C
 - White flowers at 18°C
- Siamese cats and Himalayan rabbits
 - Darker fur on cooler areas of body (tail, feet, ears)
 - Enzymes responsible for pigment formation lose catalytic function at higher temperature

Causes of variable expressivity

Temperature-sensitive mutations

- Known in viruses, bacteria, fungi, and Drosophila
- Mutant allele expresses mutant phenotype at one temperature, wild-type phenotype at another
- Broadly used in viral genetics: temperaturesensitive mutations are easily induced and isolated in viruses

Causes of variable expressivity

Nutritional effects

- Some alleles prevent the synthesis of essential nutrients in microbes, they are called auxotrophs
- Phenotype expression can be modulated by diet, which is very useful for *in vitro* studies
- In humans, diseases are caused by alleles that stops the metabolization of some substances:
 - Phenylketonuria: loss of enzyme to metabolize amino acid phenylalanine, severe problems unless low-Phe diet
 - Galactosemia, lactose intolerance, ...